

#### December 19

#### Lecture on site and online (zoom)

Video of lecture will be made available after the lecture

9h15-12am: Handling Imbalanced Datasets

Enable Incremental Learning

Overview of the course

Exam preparation

•12am-13: Open Q&A regarding exam and material of the class



**Q&A** session – exam preparation

December 19, 11h15-13:00

Friday 24, 11h00-12h00 room ME.A3.31



#### Nonlinear Regression

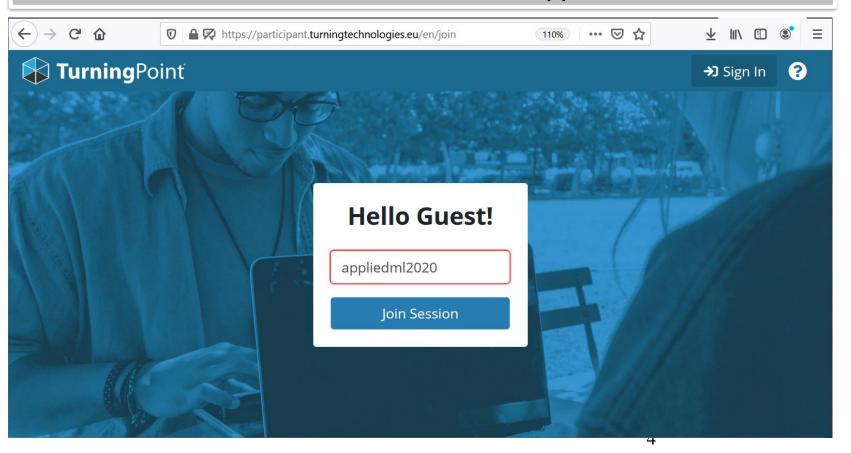
Interactive Lecture



# Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020





# Linear Regression

Find the optimal parameter w through least-square regression:

$$w^* = \min_{w} \left( \sum_{i=1}^{M} \frac{1}{2} (w^T x^i - y^i)^2 \right)$$

Closed-form solution:

$$w^* = \left(XX^T\right)^{-1} Xy$$

# Weighted Regression

Find the optimal parameter w through

least-square regression:

$$w^* = \min_{w} \left( \sum_{i=1}^{M} \frac{1}{2} \beta_i \left( w^T x^i - y^i \right)^2 \right)$$

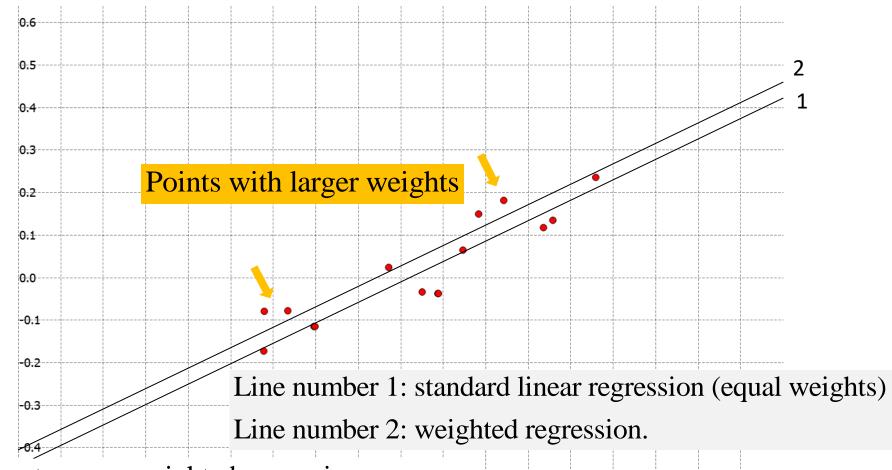
Closed-form solution:

$$w^* = \left(ZZ^T\right)^{-1} Zv x$$

$$Z = XB^{1/2}$$
 and  $v = B^{1/2}y$ 



#### Weighted linear regression



Least-square weighted regression

$$w^* = \min_{w} \left( \sum_{i=1}^{M} \frac{1}{2} \beta_i \left( w^T x^i - y^i \right)^2 \right), \quad \beta_i > 0 \quad \beta_1 = \beta_2 \dots = \beta_M$$

$$\beta_i > 0$$
  $\beta_1 = \beta_2 ... = \beta_M$  0.6 0.7 0.8



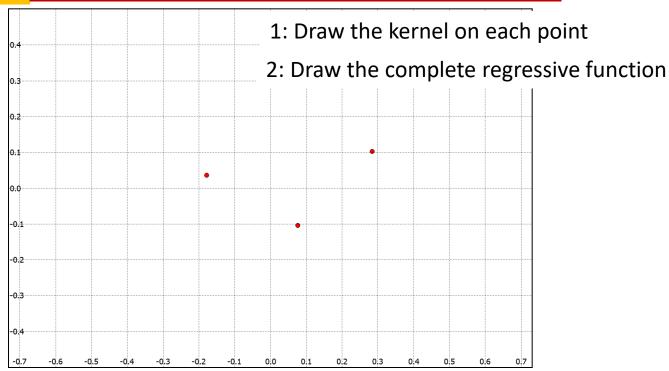
# Locally weighted regression

Introduce local solution:

$$\widehat{y}(x) = \sum_{i=1}^{M} \beta_i(x) y^i / \sum_{j=1}^{M} \beta_j(x) \qquad \beta_i(x) \in \mathbb{R} : \text{ weights function of } x$$

$$\beta_i(x) = e^{-\|x^i - x\|^2} \text{ Also closed-form solution, but local regression}$$

$$\beta_i(x) = e^{-\|x^i - x\|^2}$$
 Also closed-form solution, but local regression





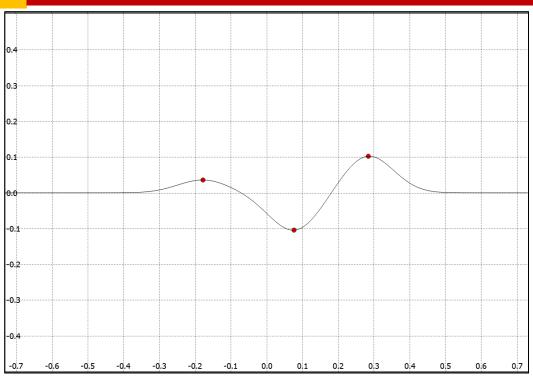
# Locally weighted regression

Introduce local solution:

$$\widehat{y}(x) = \sum_{i=1}^{M} \beta_i(x) y^i / \sum_{j=1}^{M} \beta_j(x) \quad \beta_i(x) \in \mathbb{R} : \text{ weights function of } x$$

$$\beta_i(x) = e^{-\|x^i - x\|^2} \text{ Also closed-form solution, but local regression}$$

$$\beta_i(x) = e^{-\|x^i - x\|^2}$$
 Also closed-form solution, but local regression

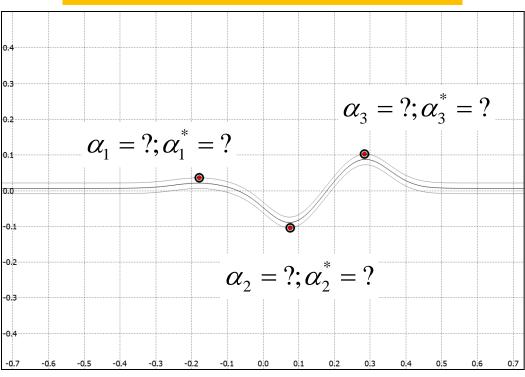




# Support Vector Regression

SVR determines automatically which point matters for building the regression.

$$y = f(x) = \sum_{i=1}^{M} (\alpha_i - \alpha_i^*) k(x^i, x) + b$$

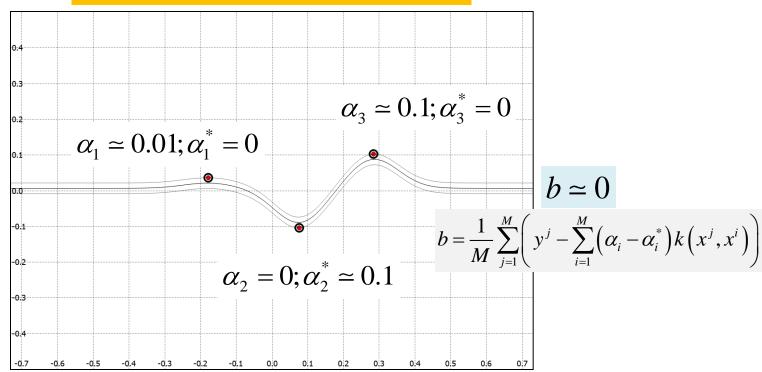




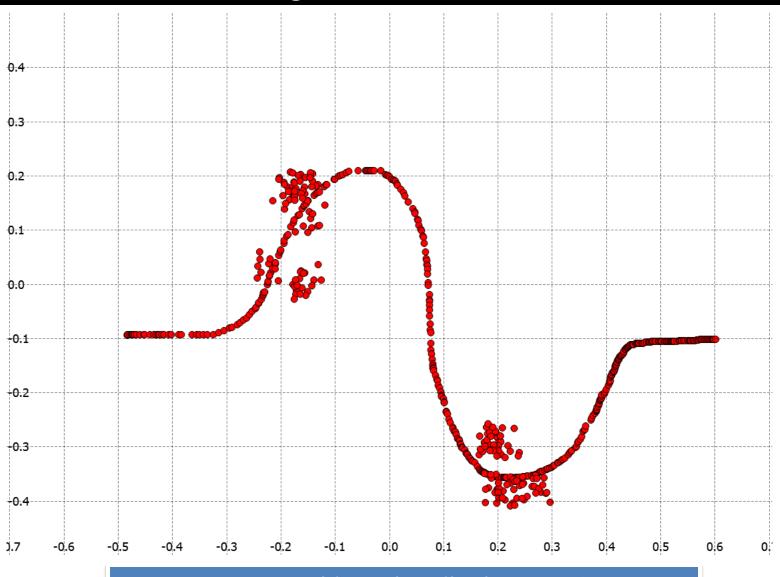
# Support Vector Regression

Determines automatically which point matters for building the regression.

$$y = f(x) = \sum_{i=1}^{M} (\alpha_i - \alpha_i^*) k(x^i, x) + b$$

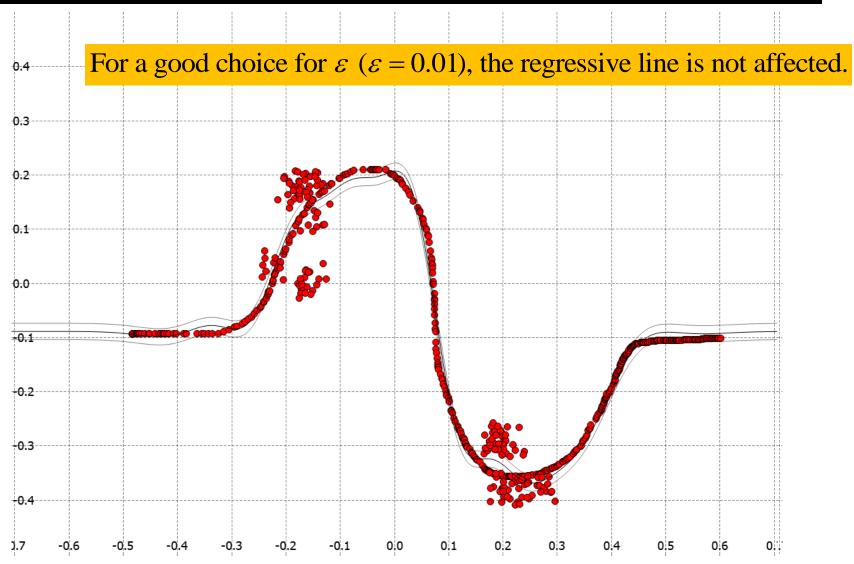




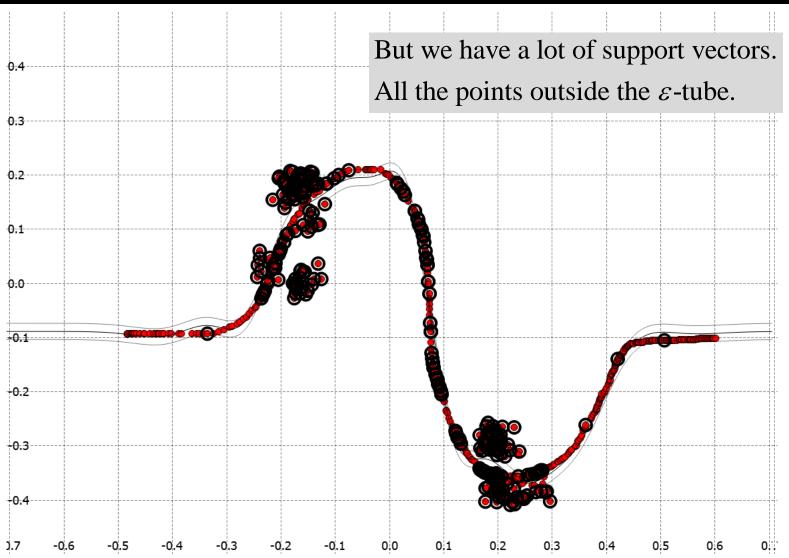


How would SVR handle this noise?

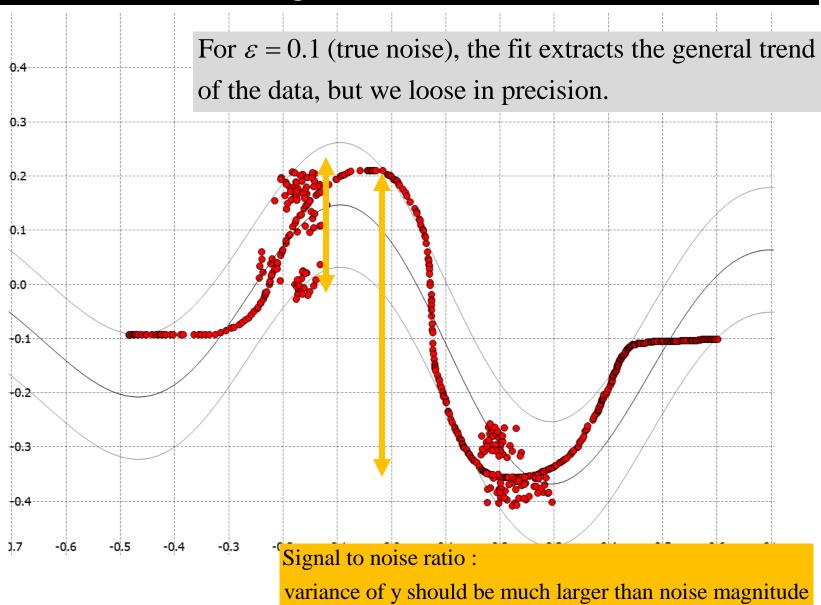




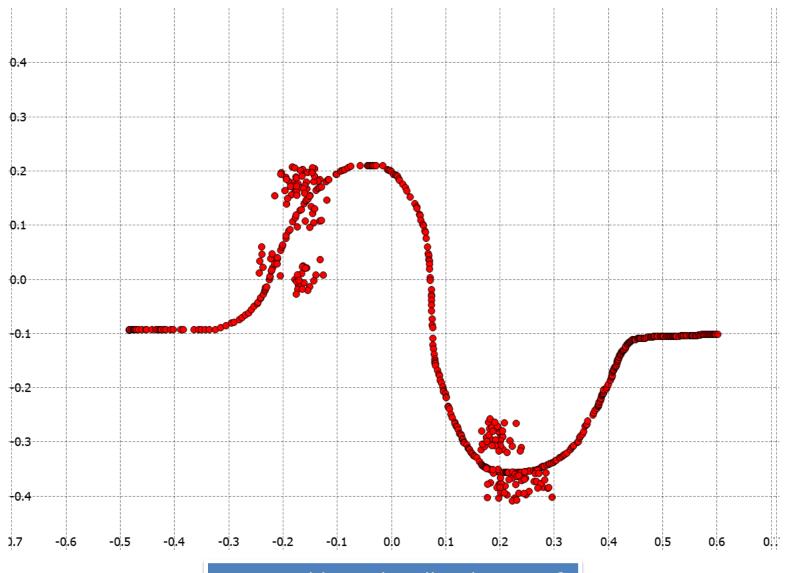






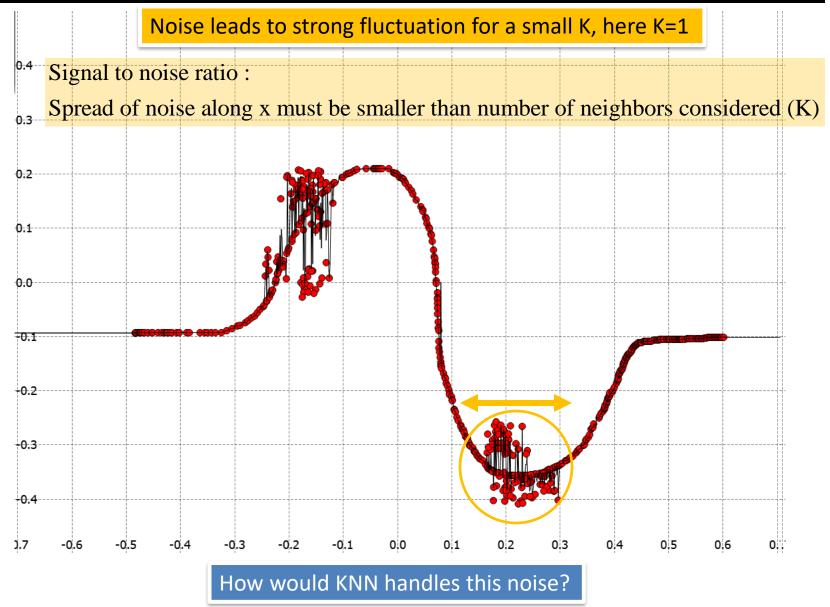






How would KNN handles this noise?

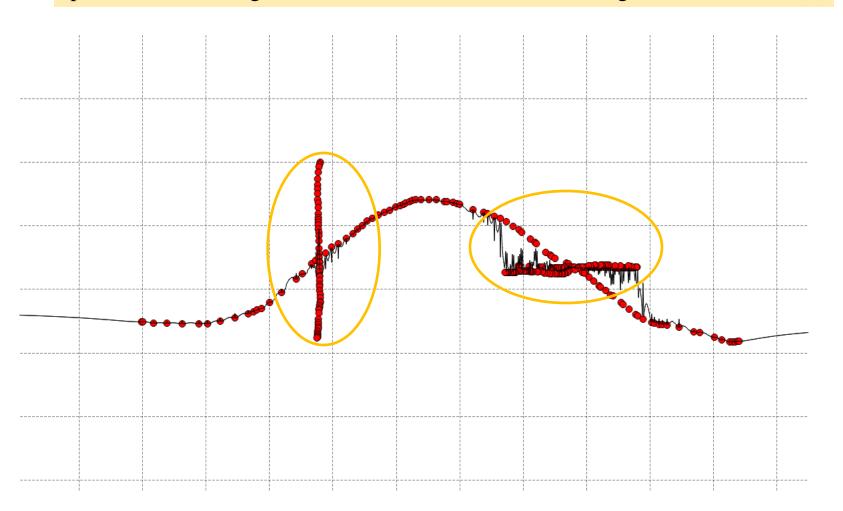




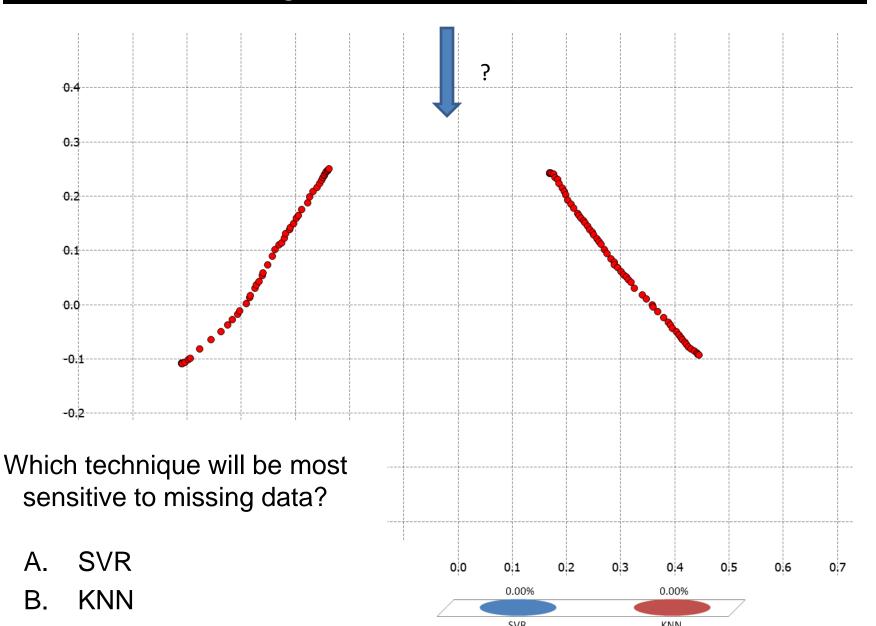


Signal to noise ratio:

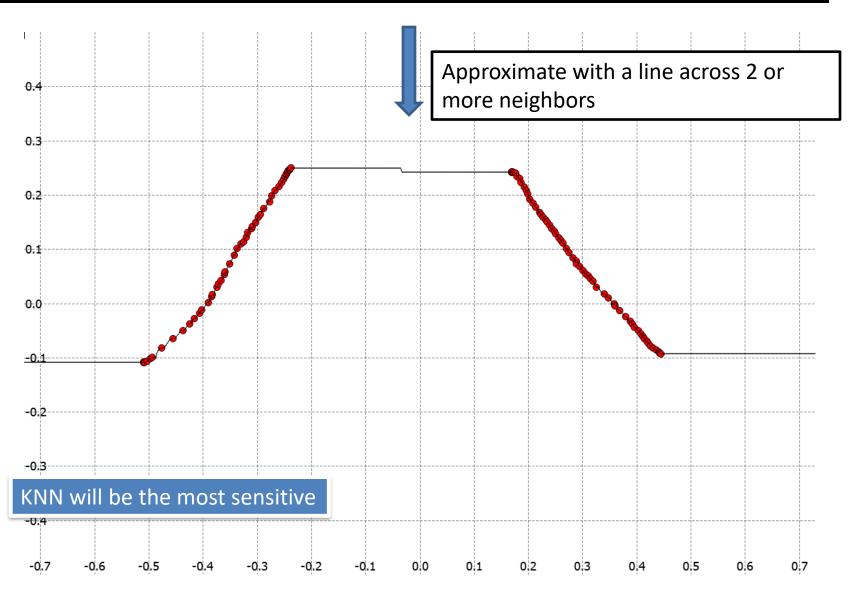
Spread of noise along x must be smaller than number of neighbors considered (K)



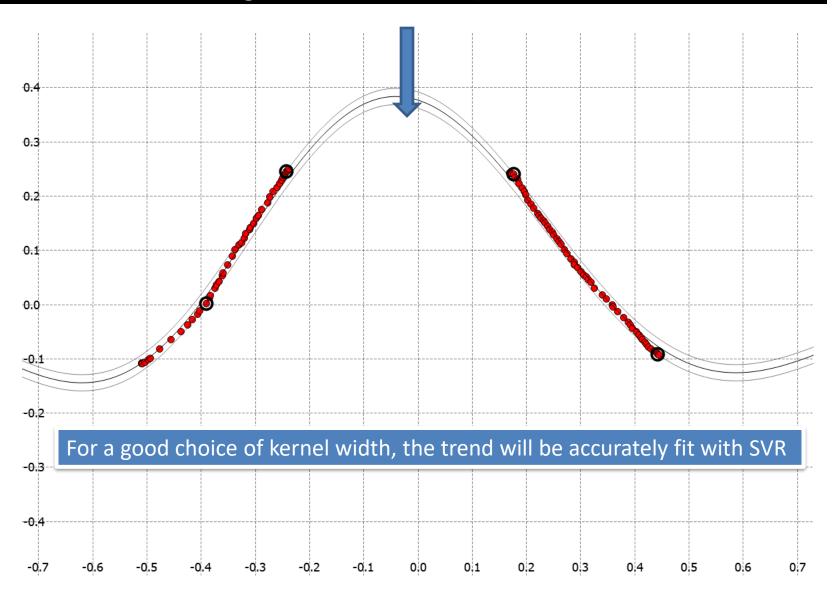




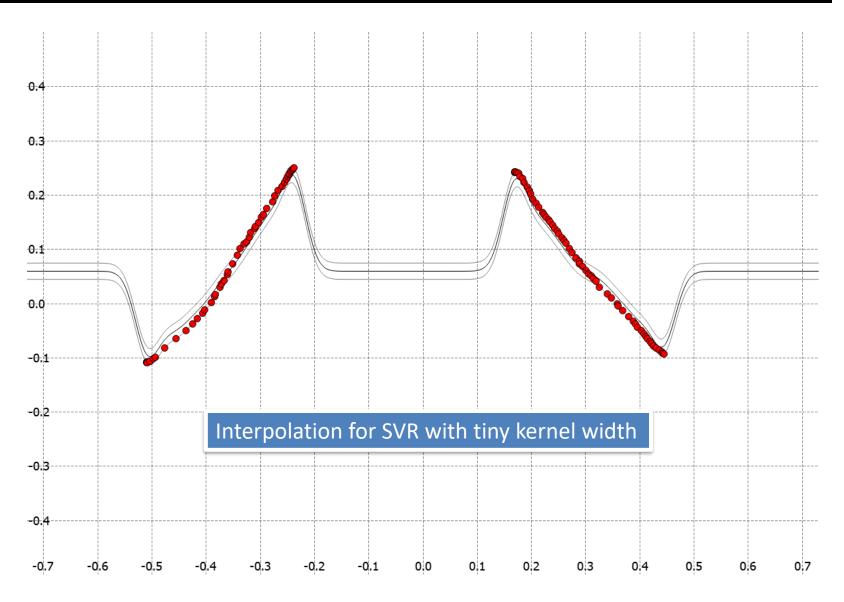








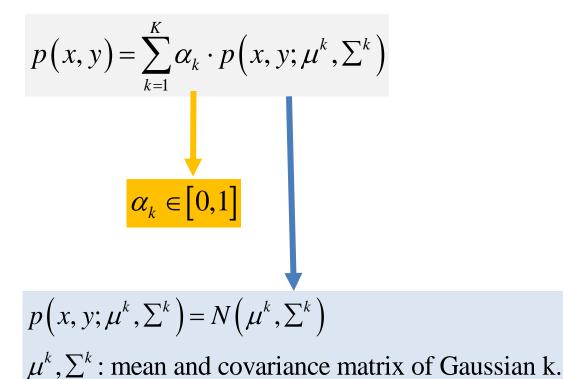






#### Gaussian mixture regression

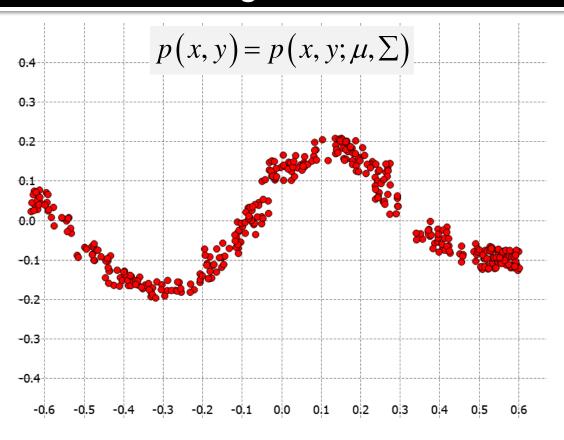
We must first learn the joint distribution



And then we compute the regressive signal:

$$y = E\{p(y \mid x)\}$$







$$y = E \left\{ p\left(y \mid x\right) \right\} = \sum_{k=1}^{K} \beta_{k} \left(x\right) \left(\mu_{y}^{k} + \sum_{yx}^{k} \left(\sum_{xx}^{k}\right)^{-1} \left(x - \mu_{x}^{k}\right)\right)$$

$$K = 1 \Rightarrow y = \mu_{y} + \sum_{yx} \left(\sum_{xx}\right)^{-1} \left(x - \mu_{x}\right)$$

$$y = \sum_{yx} \left(\sum_{xx}\right)^{-1} x + \mu_{y} - \sum_{yx} \left(\sum_{xx}\right)^{-1} \mu_{x}$$
with  $\beta_{k}(x) = \frac{\alpha_{k} \cdot p\left(x; \mu_{x}^{k}, \sum_{x}^{k}\right)}{\sum_{k=1}^{K} \alpha_{k} \cdot p\left(x; \mu_{x}^{k}, \sum_{x}^{k}\right)}$ 

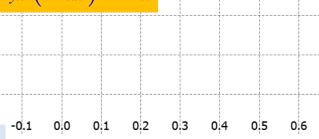
For which model is the regressive curve a straight line?

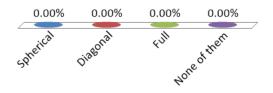


B. Diagonal

C. Full

D. None of them









Are the solutions found when using spherical or diagonal covariance matrices different?



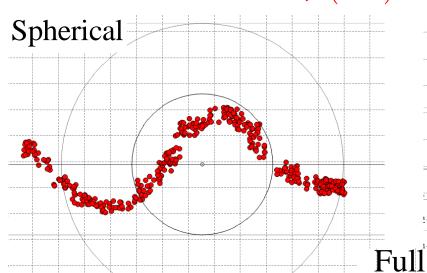
B. No 🤳

C. I do not know









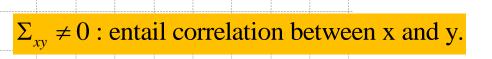
Diagonal  $\Sigma_x = \begin{bmatrix} \sigma_{x_1} & 0 \\ 0 & \sigma_{x_2} \end{bmatrix}, \Sigma_y = \begin{bmatrix} \sigma_{y_1} & 0 \\ 0 & \sigma_{y_2} \end{bmatrix}, \Sigma_{xy} = 0$ 

x, y unidimensional, hence  $\Sigma_x$ ,  $\Sigma_y$  are identical to spherical case.



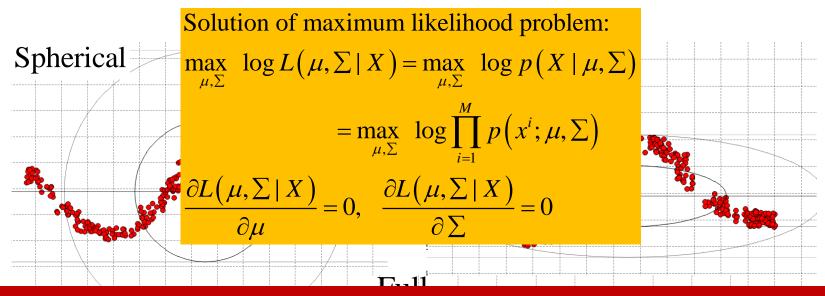
 $\Sigma_{xy}$  is a matrix for multidimensional x, y.

 $\Sigma_{xy}$  entails the correlation across x and y.





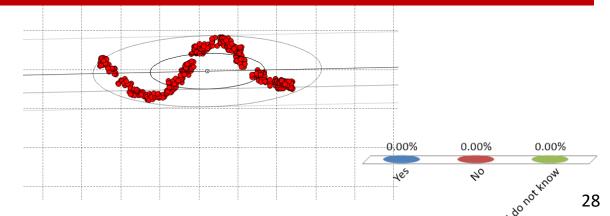
#### GMR – 1 Gauss fct: Uniqueness of solution



The solution is unique and found in closed-form: mean and variance of dataset, see exercises of pdf lecture

Is the solution unique?

- A. Yes
- B. No
- C. I do not know

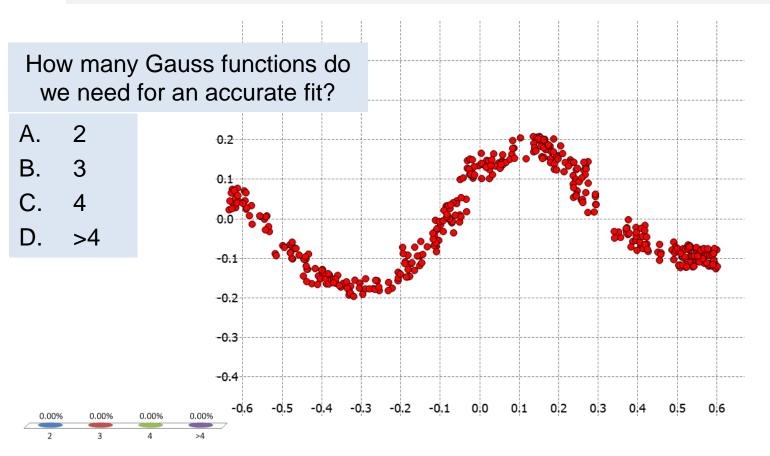




## GMR: Multiple Gauss Functions

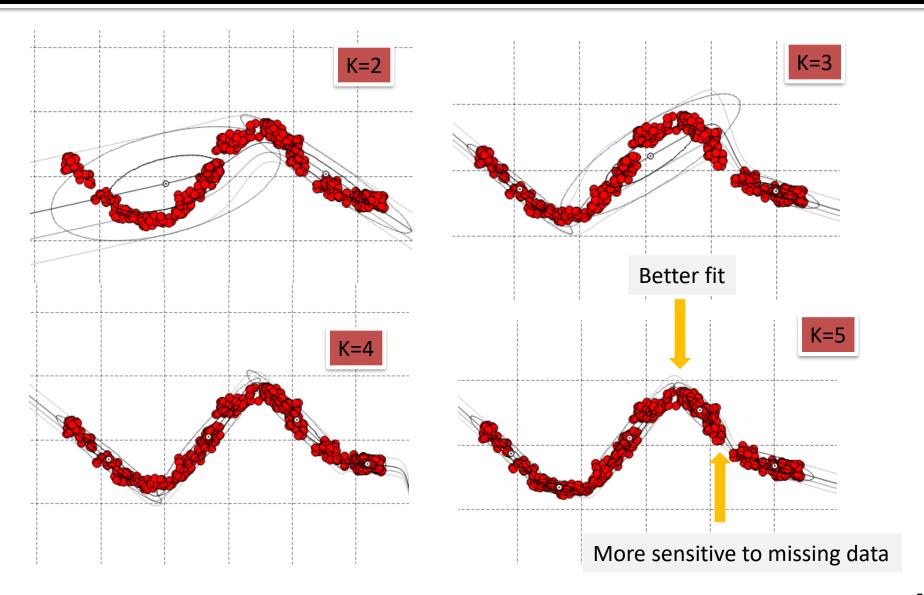
$$p(x,y) = \sum_{k=1}^{K} \alpha_k \cdot p(x,y;\mu^k, \Sigma^k), \quad \text{with } p(x,y;\mu^k, \Sigma^k) = N(\mu^k, \Sigma^k)$$

 $\mu^i, \Sigma^i$ : mean and covariance matrix of Gaussian k.

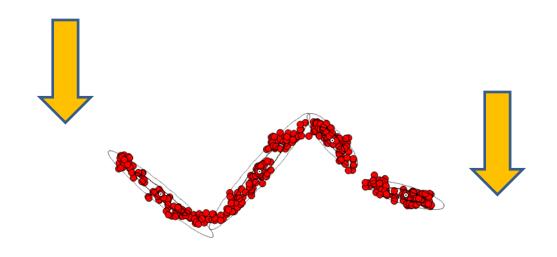




### Accuracy of fit with multiple Gauss functions

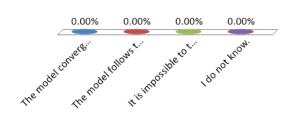


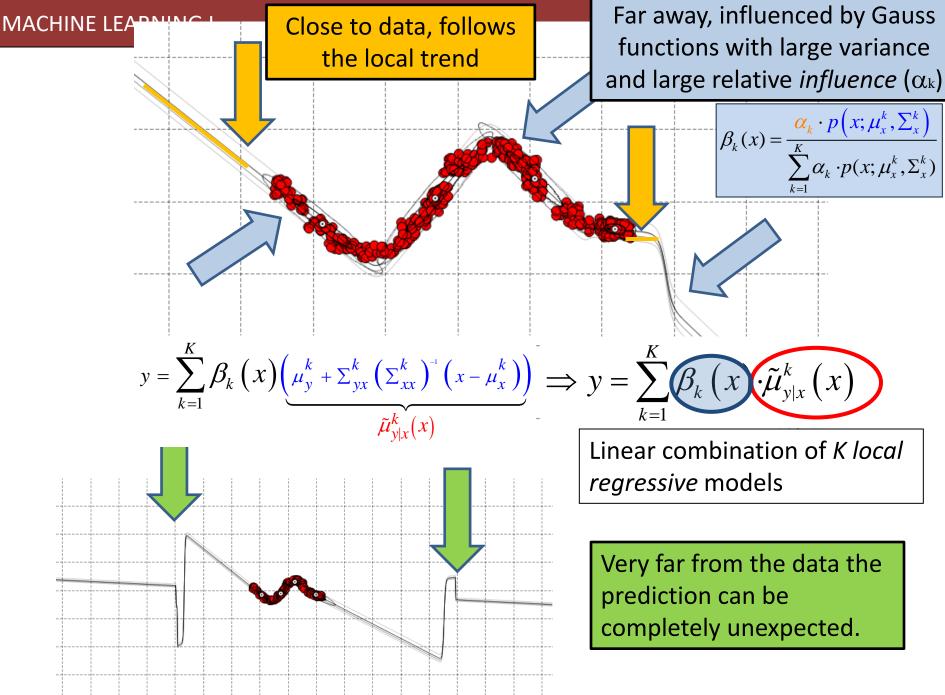




What does the model predict away from the data?

- A. The model converges to a single value.
- B. The model follows the local trend.
- C. It is impossible to tell.
- D. I do not know.



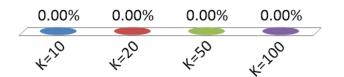


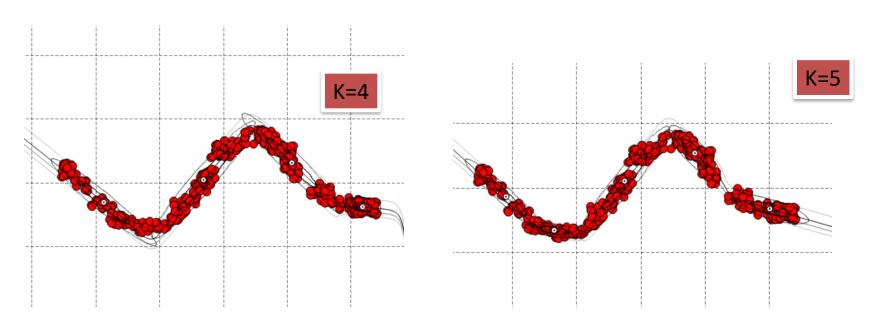


Knowing that we have ~100 points and use a 2/3<sup>rd</sup> training/testing ratio, for which K would we start seeing overfitting?



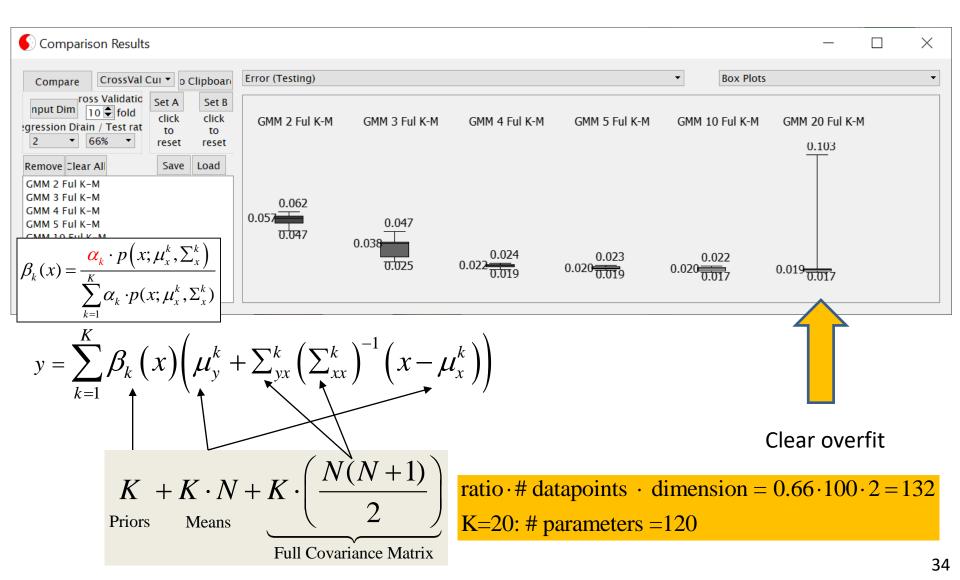
D. K=100







#### Overfitting with multiple Gauss functions

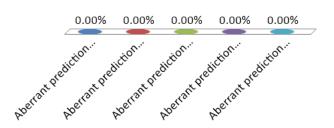




What would be the effect of overfitting in GMR?

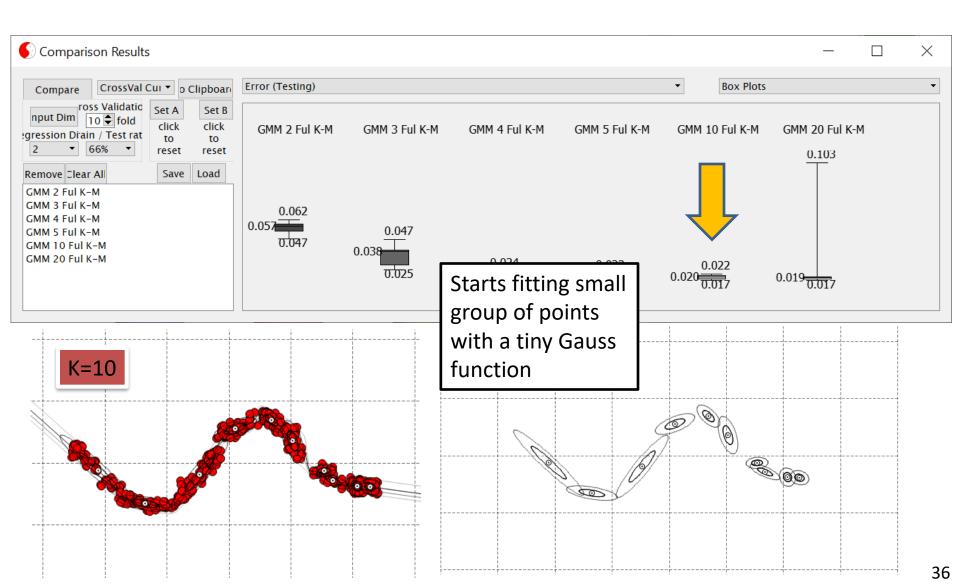
#### Multiple correct responses

- A. Aberrant prediction when far from the dataset
- B. Aberrant prediction even for query points close to the dataset
- C. Aberrant prediction could be any value, even values never seen at training.
- D. Aberrant prediction would be a value that remains within variance of the dataset.
- E. Aberrant prediction can only be "zero".





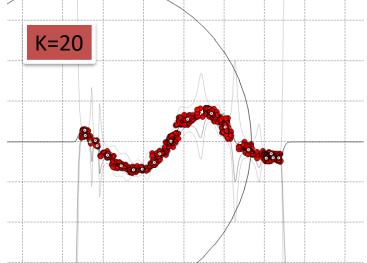
#### Overfitting with multiple Gauss functions

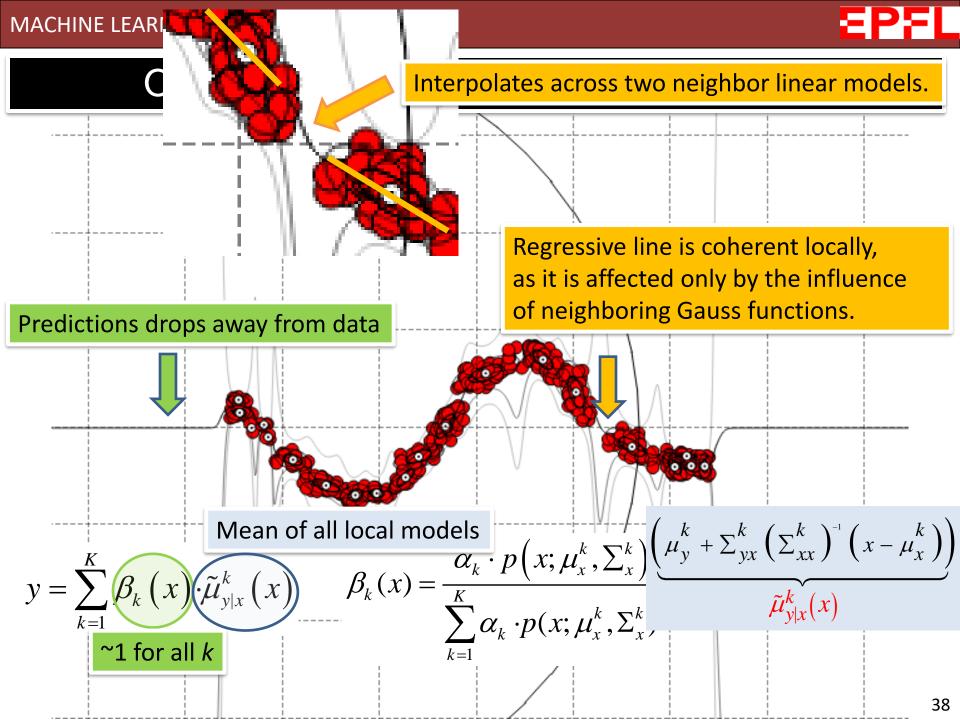




### Overfitting with multiple Gauss functions



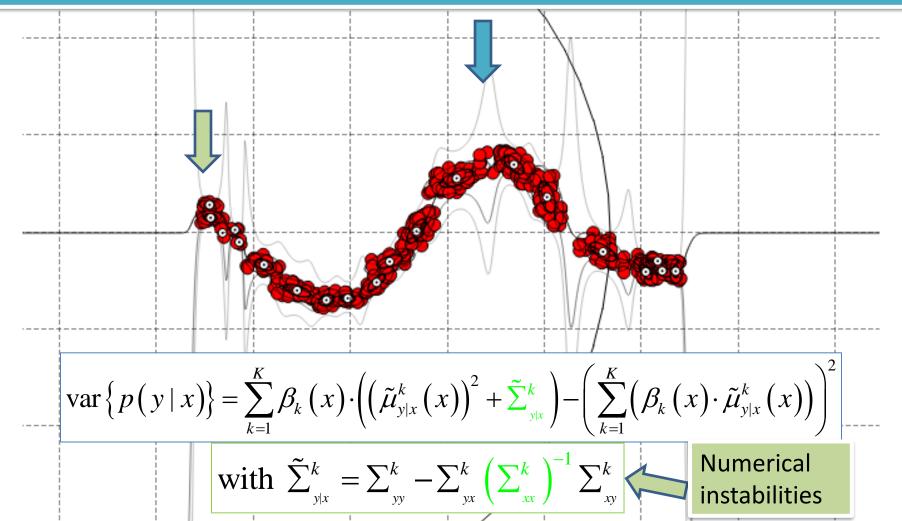






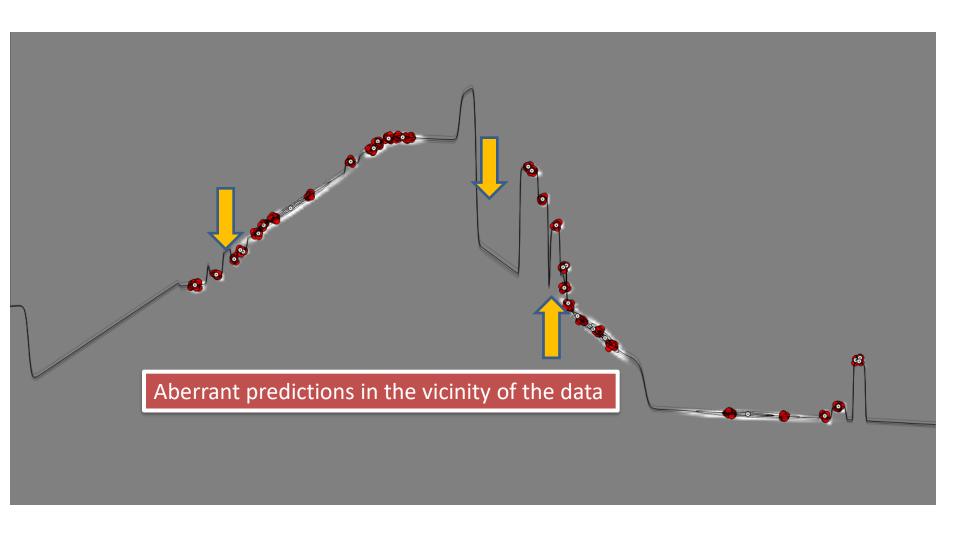
### Overfitting with multiple Gauss functions

Aberrant predictions of variance –not enough statistics to estimate all parameters, when single full Gauss function estimated from too few datapoints.



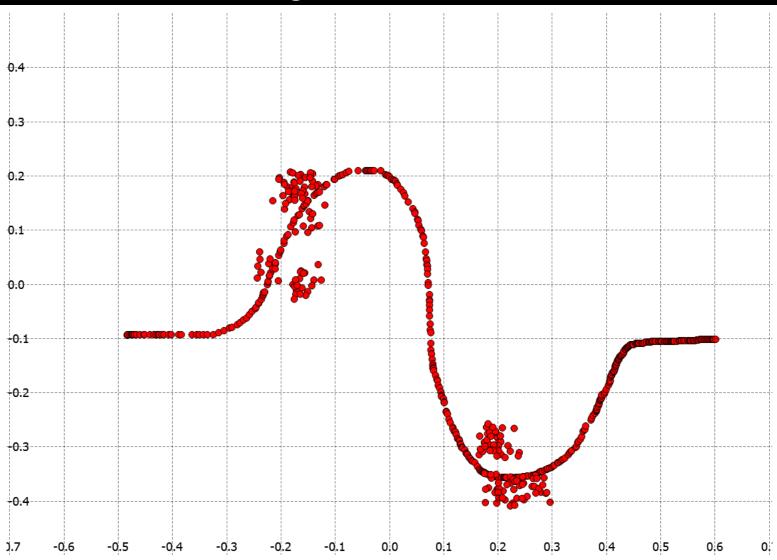


### Overfitting with multiple Gauss functions





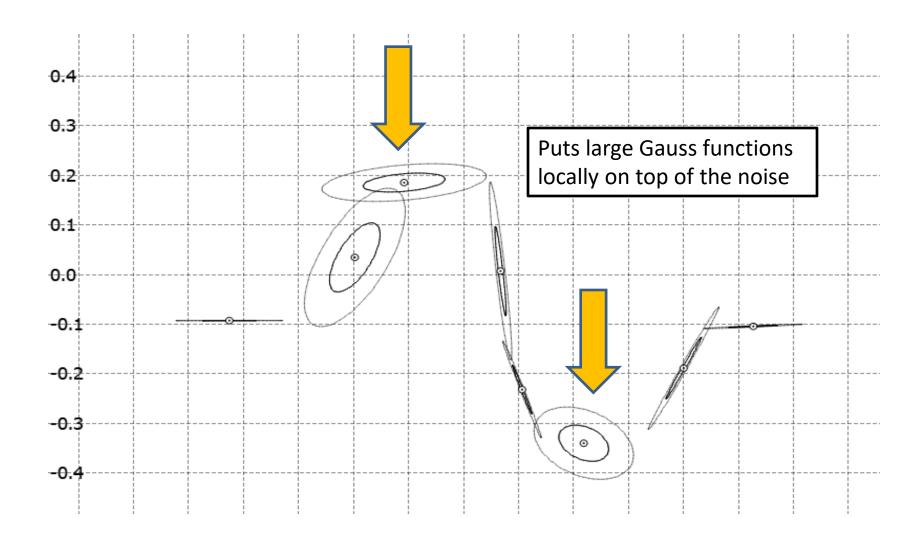
# Regression: noise



How would GMR handle this noise?

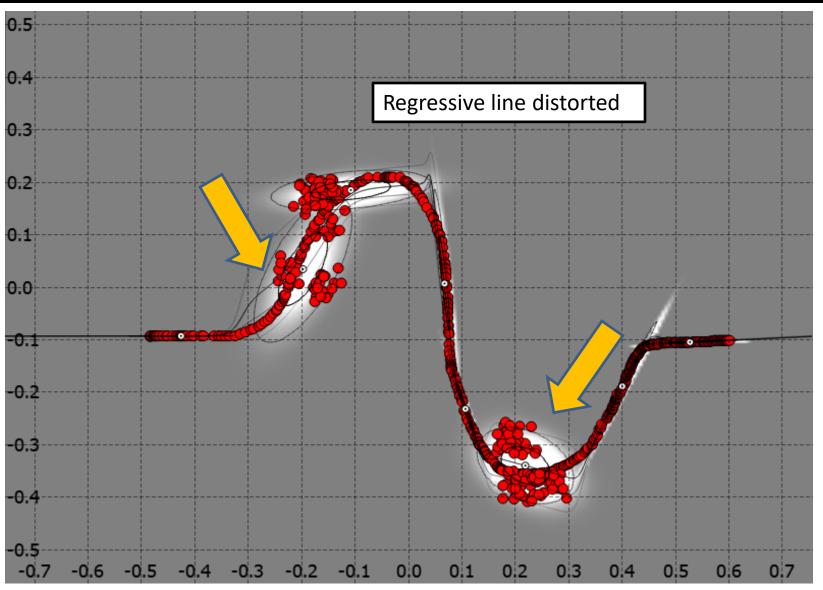


# Regression: noise



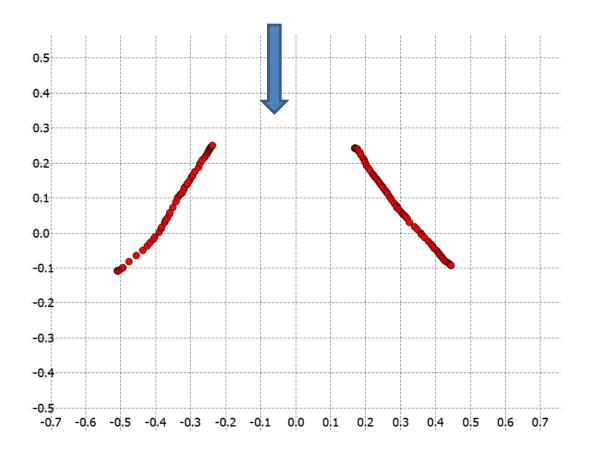


# Regression: noise





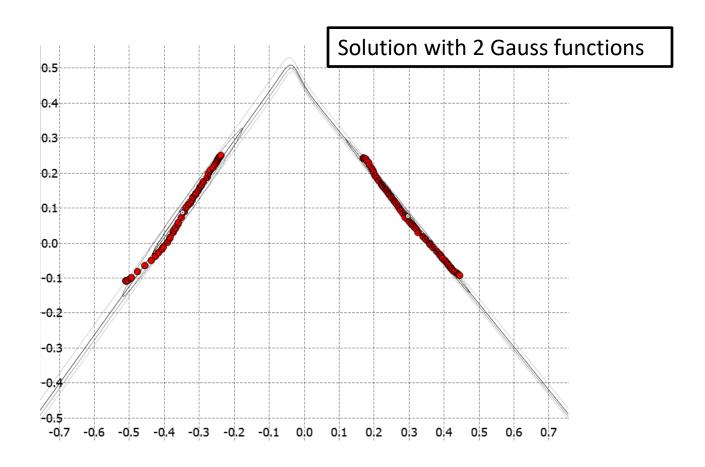
### Regression: interpolation



How would GMR handle missing data?

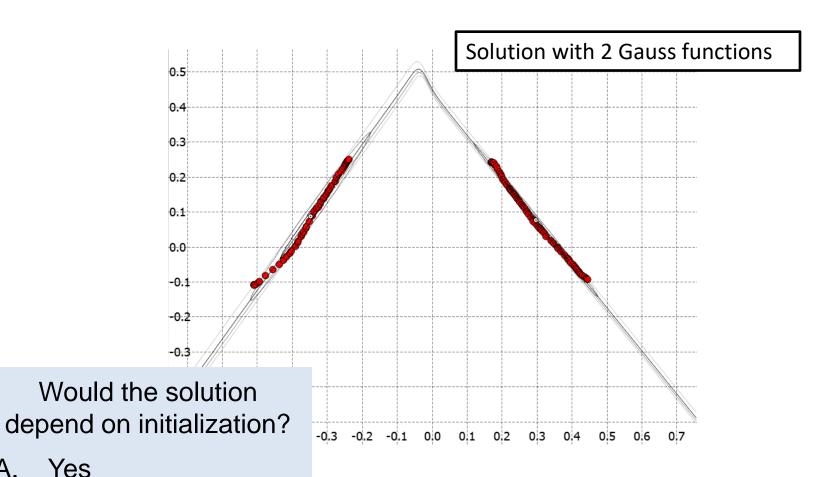


### Regression: interpolation



GMR interpolates correctly following the trend with a small curvature at the junction

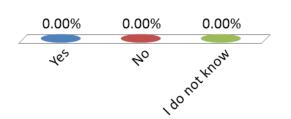




Yes Α.

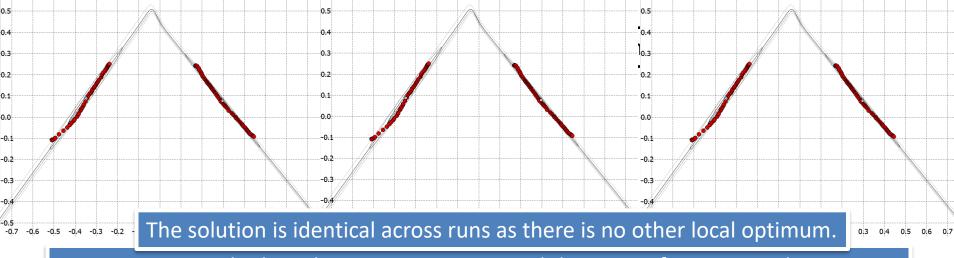
B. No

C. I do not know

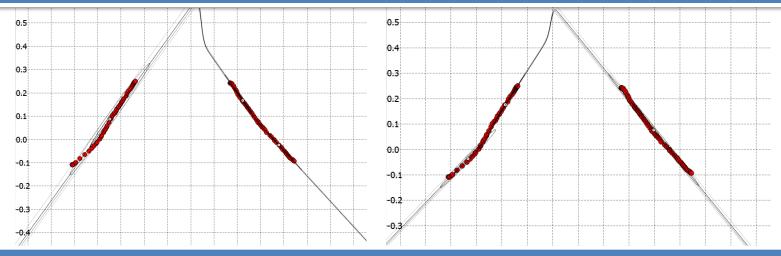




### Regression: interpolation

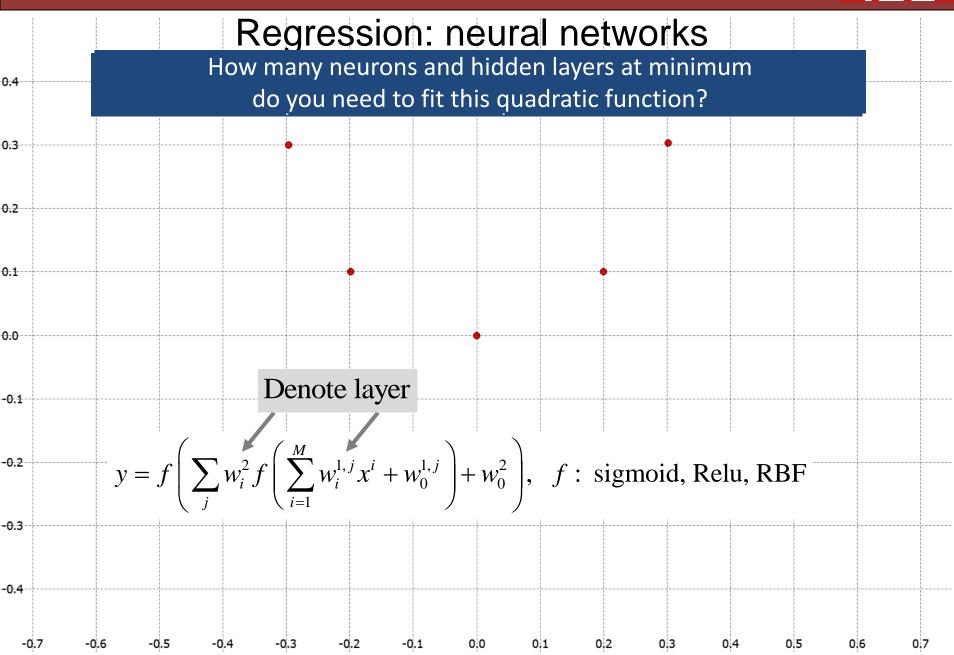


But in principle the solution is not unique and there are often many solutions, each of which corresponds to a local optima on the likelihood.



For instance, we find 2 distinct solutions for a GMM with K=3.

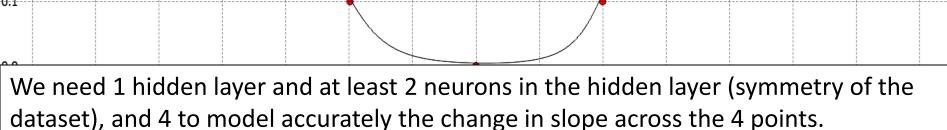


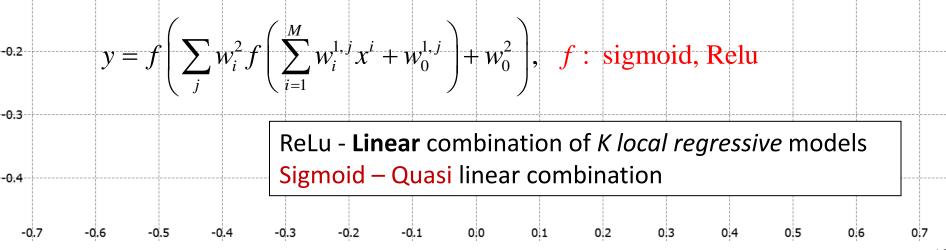




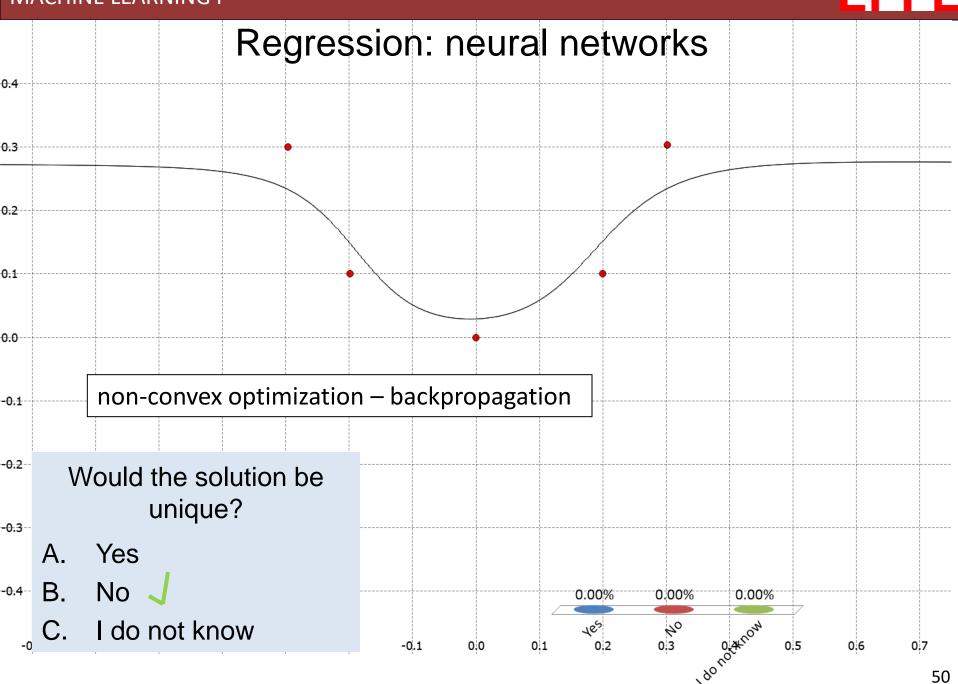


How many neurons and hidden layers at minimum do you need to fit this quadratic function?

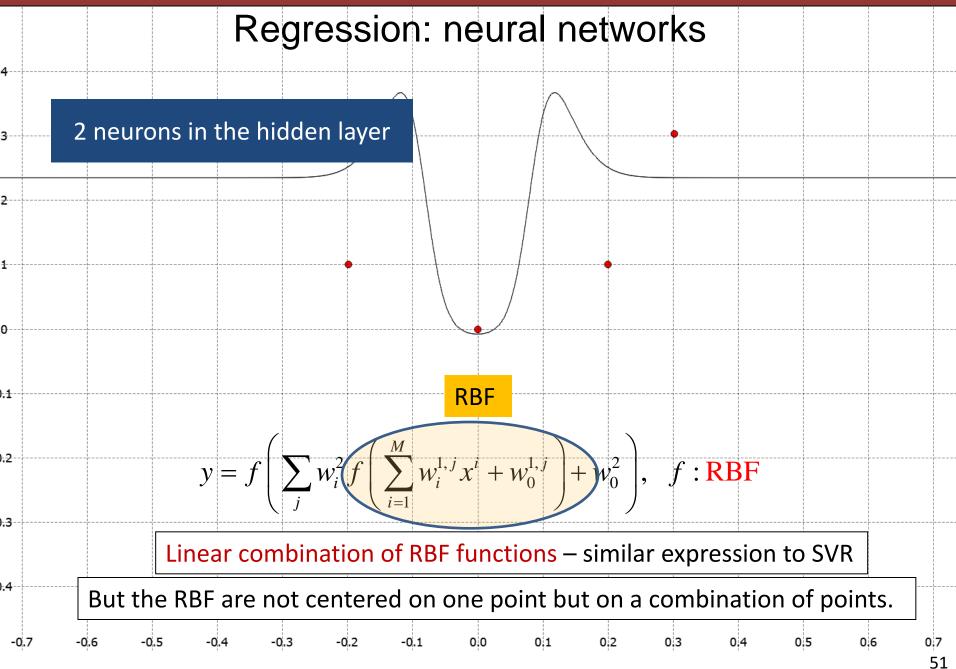




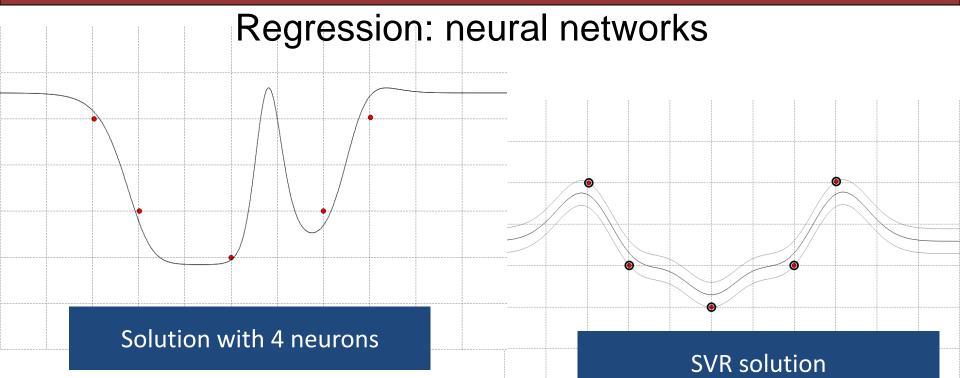












$$y = f\left(\sum_{j} w_{i}^{2} f\left(\sum_{i=1}^{M} w_{i}^{1,j} x^{i} + w_{0}^{1,j}\right) + w_{0}^{2}\right), \quad f : \mathbf{RBF}$$

RBF function – similar expression to SVR

But non-convex optimization – backpropagation, in contrast to SVR