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December 19

Lecture on site and online (zoom) 
Video of lecture will be made available after the lecture

9h15-12am: Handling Imbalanced Datasets 
                       Enable Incremental Learning 
                       Overview of the course 
                       Exam preparation

•12am-13:  Open Q&A regarding exam and material of the class
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Q&A session – exam preparation

December 19, 11h15-13:00 

Friday 24, 11h00-12h00 room ME.A3.31
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Nonlinear Regression

Interactive Lecture
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Linear Regression
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Weighted Regression
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Weighted linear regression

1

2

Line number 1: standard linear regression (equal weights)

Line number 2: weighted regression.

Points with larger weights
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Least-square weighted regression
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Locally weighted regression
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Also closed-form solution, but local regression

1: Draw the kernel on each point

2: Draw the complete regressive function
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Locally weighted regression
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Also closed-form solution, but local regression
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Support Vector Regression

SVR determines automatically which point matters for 

building the regression.
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Support Vector Regression

Determines automatically which point matters for 

building the regression.
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Regression: noise

How would SVR handle this noise?
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Regression: noise

For a good choice for  ( 0.01), the regressive line is not affected.  =

Regression: noise
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Regression: noise

But we have a lot of support vectors.

All the points outside the -tube.

Regression: noise



APPLIED MACHINE LEARNING

14

MACHINE LEARNING I

Regression: noise

For 0.1 (true noise), the fit extracts the general trend 

of the data, but we loose in precision. 

 =

Regression: noise

Signal to noise ratio :

variance of y should be much larger than noise magnitude
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Regression: noise

How would KNN handles this noise?

Regression: noise
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Regression: noise

How would KNN handles this noise?

Regression: noise
Noise leads to strong fluctuation for a small K, here K=1

Signal to noise ratio :

Spread of noise along x must be smaller than number of neighbors considered (K)
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Regression: noiseRegression: noise

Signal to noise ratio :

Spread of noise along x must be smaller than number of neighbors considered (K)
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Regression: noiseRegression: noise

With SVR, the effect of noise on x and y in influenced both by  and the kernel width . 

The smaller the kernel width , the more the noise on x influences the prediction

Very small .
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?

Which technique will be most 

sensitive to missing data?

A. SVR

B. KNN

Regression: interpolation
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Regression: Interpolation

Approximate with a line across 2 or 
more neighbors

KNN will be the most sensitive

Regression: interpolation
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Regression: Interpolation

For a good choice of kernel width, the trend will be accurately fit with SVR

Regression: interpolation
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Regression: Interpolation

Interpolation for SVR with tiny kernel width

Regression: interpolation
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We must first learn the joint distribution

And then we compute the regressive signal:

( ) |y E p y x=



APPLIED MACHINE LEARNING

24

MACHINE LEARNING I

Gaussian mixture regression: 1 Gauss model

( ) ( ), , ; ,p x y p x y = 
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For which model is the 

regressive curve a straight line?

A. Spherical

B. Diagonal

C. Full

D. None of them

Gaussian mixture regression: 1 Gauss model
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Are the solutions found when 

using spherical or diagonal 

covariance matrices different?

A. Yes

B. No

C. I do not know

Gaussian mixture regression: 1 Gauss model
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Gaussian mixture regression: 1 Gauss model
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Is the solution unique?

A. Yes

B. No

C. I do not know

GMR – 1 Gauss fct: Uniqueness of solution

Spherical Diagonal

Full
The solution is unique and found in closed-form: mean and variance of dataset,

see exercises of pdf lecture
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How many Gauss functions do 

we need for an accurate fit?

A. 2

B. 3

C. 4

D. >4
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GMR: Multiple Gauss Functions
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K=2 K=3

K=4
K=5

Accuracy of fit with multiple Gauss functions

Better fit

More sensitive to missing data
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What does the model predict away from the data?

A. The model converges to a single value.

B. The model follows the local trend.

C. It is impossible to tell.

D. I do not know.



APPLIED MACHINE LEARNING

32

MACHINE LEARNING I Close to data, follows 
the local trend

Very far from the data the 
prediction can be 
completely unexpected.
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functions with large variance 
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K=4
K=5

Knowing that we have ~100 points and use a 2/3rd training/testing 

ratio, for which K would we start seeing overfitting?

A. K=10

B. K=20

C. K=50

D. K=100
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Overfitting with multiple Gauss functions

Clear overfit

Priors Means

Full Covariance Matrix
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What would be the effect of overfitting in GMR ?

A. Aberrant prediction when far from the dataset

B. Aberrant prediction even for query points close 
to the dataset

C. Aberrant prediction could be any value, even 
values never seen at training.

D. Aberrant prediction would be a value  that 
remains within variance of the dataset.

E. Aberrant prediction can only be “zero”.

Multiple correct responses
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Overfitting with multiple Gauss functions

K=10

Starts fitting small 
group of points 
with a tiny Gauss 
function
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Overfitting with multiple Gauss functions

K=20
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Overfitting with multiple Gauss functions

Predictions drops away from data

Regressive line is coherent locally,
as it is affected only by the influence 
of neighboring Gauss functions.
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Overfitting with multiple Gauss functions

Aberrant predictions of variance –not enough statistics to estimate all parameters, 
when single full Gauss function estimated from too few datapoints.
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Overfitting with multiple Gauss functions

Aberrant predictions in the vicinity of the data
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Regression: noise

How would GMR handle this noise?
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Regression: noise

Puts large Gauss functions 
locally on top of the noise
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Regression: noise

Regressive line distorted
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Regression: Interpolation

How would GMR handle missing data?

Regression: interpolation
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Regression: Interpolation

Solution with 2 Gauss functions

Regression: interpolation

GMR interpolates  correctly following the trend with a small curvature at the junction
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Solution with 2 Gauss functions

Would the solution 

depend on initialization?

A. Yes

B. No

C. I do not know
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Regression: Interpolation

Solution with 2 Gauss functions

Regression: interpolation

But in principle the solution is not unique and there are often many solutions, 
each of which corresponds to a local optima on the likelihood. 

For instance, we find 2 distinct solutions for a GMM with K=3.

The solution is identical across runs as there is no other local optimum.
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Regression: neural networks

2 1, 1, 2

0 0

1

,    :  sigmoid, Relu, RBF
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Denote layer

How many neurons and hidden layers at minimum 
do you need to fit this quadratic function?

How many neurons and hidden layers at minimum 
do you need to fit this quadratic function?
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Regression: neural networks

ReLu - Linear combination of K local regressive models
Sigmoid – Quasi linear combination

We need 1 hidden layer and at least 2 neurons in the hidden layer (symmetry of the 
dataset), and 4 to model accurately the change in slope across the 4 points.

How many neurons and hidden layers at minimum 
do you need to fit this quadratic function?
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M

j i j

i i

j i

y f w f w x w fw
=

  
= + +  

  
 



APPLIED MACHINE LEARNING

50

APPLIED MACHINE LEARNINGMACHINE LEARNING I

Would the solution be 

unique?

A. Yes

B. No

C. I do not know

Regression: neural networks

non-convex optimization – backpropagation
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Regression: neural networks

Linear combination of RBF functions – similar expression to SVR

2 neurons in the hidden layer

2 1, 1, 2

0 0

1

RB F,   :
M
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RBF

But the RBF are not centered on one point but on a combination of points.
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Regression: neural networks

But non-convex optimization – backpropagation, in contrast to SVR

2 1, 1, 2

0 0

1

RB F,   :
M

j i j

i i
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y f w f w x w w f
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Solution with 4 neurons
SVR solution

RBF function – similar expression to SVR
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